other activities. In some example structures according to this invention, the polymer foam material may encapsulate or include various elements, such as a fluid-filled bladder or moderator, that enhance the comfort, motion-control, stability, and/or ground or other contact surface reaction force attenuation properties of footwear 100. In still other example structures, the midsole 131 may include additional elements that compress to attenuate ground or other contact surface reaction forces. For instance, the midsole may include column type elements to aid in cushioning and absorption of forces.

[0118] Outsole 132 is secured to a lower surface of midsole 131 in this illustrated example footwear structure 100 and is formed of a wear-resistant material, such as rubber or a flexible synthetic material, such as polyurethane, that contacts the ground or other surface during ambulatory or other activities. The material forming outsole 132 may be manufactured of suitable materials and/or textured to impart enhanced traction and slip resistance. The structure and methods of manufacturing the outsole 132 will be discussed further below. A foot contacting member 133 (which may be an insole member, a sockliner, a bootie member, a strobel, a sock, etc.) is typically a thin, compressible member that may be located within the void in upper 120 and adjacent to a lower surface of the foot (or between the upper 120 and midsole 131) to enhance the comfort of footwear 100. In some arrangements, an insole or sockliner may be absent, and in other embodiments, the footwear 100 may have a foot contacting member positioned on top of an insole or sockliner.

[0119] The outsole 132 shown in FIGS. 1 and 2 includes a

plurality of incisions or sipes 136 in either or both sides of the

outsole 132. These sipes 136 may extend from the bottom of

the outsole 132 to an upper portion thereof or to the midsole 131. In one arrangement, the sipes 136 may extend from a bottom surface of the outsole 132 to a point halfway between the bottom of the outsole 132 and the top of the outsole 132. In another arrangement, the sipes 136 may extend from the bottom of the outsole 132 to a point greater than halfway to the top of the outsole 132. In yet another arrangement, the sipes 136 may extend from the bottom of the outsole 132 to a point where the outsole 132 meets the midsole 131. The sipes 136 may provide additional flexibility to the outsole 132, and thereby allow the outsole to more freely flex in the natural directions in which the wearer's foot flexes. In addition, the sipes 136 may aid in providing traction for the wearer. It is understood that embodiments of the present invention may be used in connection with other types and configurations of shoes, as well as other types of footwear and sole structures. [0120] FIGS. 3-5 illustrate exemplary embodiments of the footwear 100 incorporating a sensor system 12 in accordance with the present invention. The sensor system 12 includes a force sensor assembly 13, having a plurality of sensors 16, and a communication or output port 14 in communication with the sensor assembly 13 (e.g., electrically connected via conductors). In the embodiment illustrated in FIG. 3, the system 12 has four sensors 16: a first sensor 16A at the big toe (first phalange) area of the shoe, two sensors 16B-C at the forefoot area of the shoe, including a second sensor 16B at the first metatarsal head region and a third sensor 16C at the fifth metatarsal head region, and a fourth sensor 16D at the heel. These areas of the foot typically experience the greatest degree of pressure during movement. The embodiment described below and shown in FIGS. 7-9 utilizes a similar configuration of sensors 16. Each sensor 16 is configured for detecting a force exerted by a user's foot on the sensor 16. The sensors communicate with the port 14 through sensor leads 18, which may be wire leads and/or another electrical conductor or suitable communication medium. For example, in one embodiment, the sensor leads 18 may be an electrically conductive medium printed on the foot contacting member 133, the midsole member 131, or another member of the sole structure 130, such as a layer between the foot contacting member 133 and the midsole member 131.

[0121] Other embodiments of the sensor system 12 may contain a different number or configuration of sensors 16, such as the embodiments described below and shown in FIGS. 7-9 and generally include at least one sensor 16. For example, in one embodiment, the system 12 includes a much larger number of sensors, and in another embodiment, the system 12 includes two sensors, one in the heel and one in the forefoot of the shoe 100. In addition, the sensors 16 may communicate with the port 14 in a different manner, including any known type of wired or wireless communication, including Bluetooth and near-field communication. A pair of shoes may be provided with sensor systems 12 in each shoe of the pair, and it is understood that the paired sensor systems may operate synergistically or may operate independently of each other, and that the sensor systems in each shoe may or may not communicate with each other. The communication of the sensor systems 12 is described in greater detail below. It is understood that the sensor system 12 may be provided with computer programs/algorithms to control collection and storage of data (e.g., pressure data from interaction of a user's foot with the ground or other contact surface), and that these programs/algorithms may be stored in and/or executed by the sensors 16, the port 14, the module 22, and/or the external device 110. The sensors 16 may include necessary components (e.g. a processor, memory, software, TX/RX, etc.) in order to accomplish storage and/or execution of such computer programs/algorithms and/or direct (wired or wireless) transmission of data and/or other information to the port 14 and/or the external device 110.

[0122] The sensor system 12 can be positioned in several configurations in the sole 130 of the shoe 100. In the examples shown in FIGS. 4-5, the port 14, the sensors 16, and the leads 18 can be positioned between the midsole 131 and the foot contacting member 133, such as by connecting the port 14, the sensors 16, and/or the leads 18 to the top surface of the midsole 131 or the bottom surface of the foot contacting member 133. A cavity or well 135 can be located in the midsole 131 (FIG. 4) or in the foot contacting member 133 (FIG. 5) for receiving an electronic module, as described below, and the port 14 may be accessible from within the well 135. In the embodiment shown in FIG. 4, the well 135 is formed by an opening in the upper major surface of the midsole 131, and in the embodiment shown in FIG. 5, the well 135 is formed by an opening in the lower major surface of the foot contacting member 133 foot contacting member 133. The well 135 may be located elsewhere in the sole structure 130 in other embodiments. For example, the well 135 may be located partially within both the foot contacting member 133 and the midsole member 131 in one embodiment, or the well 135 may be located in the lower major surface of the midsole 131 or the upper major surface of the foot contacting member 133. In a further embodiment, the well 135 may be located in the outsole 132 and may be accessible from outside the shoe 100, such as through an opening in the side, bottom, or heel of the sole 130. In the configurations illustrated in FIGS. 4-5, the